Podcast Episode Details

Back to Podcast Episodes
Ranking the Chinese Open Model Builders

Ranking the Chinese Open Model Builders



The Chinese AI ecosystem has taken the AI world by storm this summer with an unrelenting pace of stellar open model releases. The flagship releases that got the most Western media coverage are the likes of Qwen 3, Kimi K2, or Zhipu GLM 4.5, but there is a long-tail of providers close behind in both quality and cadence of releases.

In this post we rank the top 19 Chinese labs by the quality and quantity of contributions to the open AI ecosystem — this is not a list of raw ability, but outputs — all the way from the top of DeepSeek to the emerging open research labs. For a more detailed coverage of all the specific models, we recommend studying our Artifacts Log series, which chronicles all of the major open model releases every month. We plan to revisit this ranking and make note of major new players, so make sure to subscribe.

At the frontier

These companies rival Western counterparts with the quality and frequency of their models.

DeepSeek

deepseek.com | 🤗 deepseek-ai | X @DeepSeek_AI

DeepSeek needs little introduction. Their V3 and R1 models, and their impact, are still likely the biggest AI stories of 2025 — open, Chinese models at the frontier of performance with permissive licenses and the exposed model chains of thought that enamored users around the world.

With all the attention following the breakthrough releases, a bit more has been said about DeepSeek in terms of operations, ideology, and business model relative to the other labs. They are very innovative technically and have not devoted extensive resources to their consumer chatbot or API hosting (as judged by higher than industry-standard performance degradation).

Over the last 18 months, DeepSeek was known for making “about one major release a month.” Since the updated releases of V3-0324 and R1-0528, many close observers have been surprised by their lack of contributions. This has let other players in the ecosystem close the gap, but in terms of impact and actual commercial usage, DeepSeek is still king.

An important aspect of DeepSeek’s strategy is their focus on improving their core models at the frontier of performance. To complement this, they have experiments using their current generation to make fundamental research innovations, such as theorem proving or math models, which ultimately get used for the next iteration of models. This is similar to how Western labs operate. First, you test a new idea as an experiment internally, then you fold it into the “main product” that most of your users see.

DeepSeekMath, for example, used DeepSeek-Coder-Base-v1.5 7B and introduced the now famous reinforcement learning algorithm Group Relative Policy Optimization (GRPO), which is one of the main drivers of R1. Th


Published on 1 month ago






If you like Podbriefly.com, please consider donating to support the ongoing development.

Donate