Season 16 Episode 5
Join Lois Houston and Nikita Abraham as they chat with Yunus Mohammed, a Principal Instructor at Oracle University, about the key stages of AI model development. From gathering and preparing data to selecting, training, and deploying models, learn how each phase impacts AI’s real-world effectiveness. The discussion also highlights why monitoring AI performance and addressing evolving challenges are critical for long-term success. AI for You: https://mylearn.oracle.com/ou/course/ai-for-you/152601/252500 Oracle University Learning Community: https://education.oracle.com/ou-community LinkedIn: https://www.linkedin.com/showcase/oracle-university/ X: https://x.com/Oracle_Edu Special thanks to Arijit Ghosh, David Wright, Kris-Ann Nansen, Radhika Banka, and the OU Studio Team for helping us create this episode. -------------------------------------------------------------- Episode Transcript:
00:00
Welcome to the Oracle University Podcast, the first stop on your cloud journey. During this series of informative podcasts, we’ll bring you foundational training on the most popular Oracle technologies. Let’s get started!
00:25
Lois: Welcome to the Oracle University Podcast! I’m Lois Houston, Director of Innovation Programs with Oracle University, and with me is Nikita Abraham, Team Lead: Editorial Services.
Nikita: Hey everyone! In our last episode, we spoke about generative AI and gen AI agents. Today, we’re going to look at the key stages in a typical AI workflow. We’ll also discuss how data quality, feedback loops, and business goals influence AI success. With us today is Yunus Mohammed, a Principal Instructor at Oracle University.
01:00
Lois: Hi Yunus! We're excited to have you here! Can you walk us through the various steps in developing and deploying an AI model?
Yunus: The first point is the collect data. We gather relevant data, either historical or real time. Like customer transactions, support tickets, survey feedbacks, or sensor logs. A travel company, for example, can collect past booking data to predict future demand. So, data is the most crucial and the important component for building your AI models.
But it's not just the data. You need to prepare the data. In the prepared data process, we clean, organize, and label the data. AI can't learn from messy spreadsheets. We try to make the data more understandable and organized, like removing duplicates, filling missing values in the data with some default values or formatting dates. All these comes under organization of the data and give a label to the data, so that the data becomes more supervised.
After preparing the data, I go for selecting the model to train. So now, we pick what type of model fits your goals. It can be a traditional ML model or a deep learning network model, or it can be a generative model. The model is chosen based on the business problems and the data we have.
So, we train the model using the prepared data, so it can learn the patterns of the data. Then after the model is trained, I need to evaluate the model. You check how well the model performs. Is it accurate? Is it fair? The metrics of the evaluation will vary based on the goal that you're trying to reach.
If your model misclassifies emails as spam and it is doing it very much often, then it is not ready. So I need to train it further. So I need to train it to a level when it identifies the official mail as official mail and spam mail as spam mail accurately.
Published on 3 weeks ago
If you like Podbriefly.com, please consider donating to support the ongoing development.
Donate