Episode Details
Back to Episodes
Könnte man etwas unsichtbar machen, wenn man es mit ultravioletter Farbe bestreicht?
Published 1 year, 10 months ago
Description
Nein, aber die Idee klingt natürlich bestechend. Andererseits: Wenn es möglich wäre, hätte das wohl schon mal jemand gemacht. Wo also ist der Haken? Andersherum gefragt: Wann ist etwas überhaupt sichtbar?
Sichtbar sind entweder Objekte, die selber Licht erzeugen und ausstrahlen – wie die Sonne oder eine Glühlampe – oder Objekte, Oberflächen, die Licht reflektieren. Fast alles, was wir täglich sehen, sind Oberflächen, die Sonnenlicht reflektieren.Und weiter:Quelle: Hans Kricheldorf, Professor für makromolekulare Chemie
Man muss unterscheiden, dass es zwei Arten von „sehen“ gibt. Nämlich das physikalische Sehen – es kommt Licht und dringt in unser Auge ein. Das ist der physikalische Teil des Sehens. Aber was uns bewusst wird, bedarf einer Verarbeitung durch das Gehirn; das will ich als das „Wahrnehmen“ bezeichnen. Das ist nun wichtig, wenn wir fragen: Was ist unsichtbar und was ist sichtbar?Entsprechend, erklärt der Materialwissenschaftler, gibt es auch zwei Varianten der Unsichtbarkeit. Variante 1 bedeutet: Unsichtbar im Sinne von durchsichtig, transparent.Quelle: Hans Kricheldorf, Professor für makromolekulare Chemie
Luft zum Beispiel oder eine hochtransparente Glasscheibe können wir physikalisch nicht sehen, weil von dort kein Licht zu uns zurückkommt.Und gleich die Einschränkung: Luft strahlt durchaus. Sie sendet elektromagnetische Wellen durch den Raum. Doch diese können wir nicht sehen, denn unsere Augen sind nur für einen winzigen Ausschnitt des elektromagnetischen Spektrums überhaupt empfänglich. Wir sehen keine Radiowellen – deren Wellenlänge ist viel zu lang. Wir sehen keine Röntgenstrahlen – die sind viel zu kurz. Unsere Augen sind eigentlich ziemlich beschränkt. Sie sehen nur die Farben des Regenbogens, und der ist ein dünner Strich in der Landschaft der elektromagnetischen Wellen. Würden wir die Wellenlängen der Regenbogenfarben in Schallwellen übersetzen, dann entspräche der Abstand zwischen dem inneren und äußeren Rand des Regenbogens gerade mal einer Oktave. Mehr nicht. Alle Lichtfrequenzen, die größer oder kleiner sind, sehen wir nicht.Quelle: Hans Kricheldorf, Professor für makromolekulare Chemie
Alle diese diversen Strahlenbereiche, da strahlt Luft zum Beispiel im Mikrowellen- oder im Infrarotbereich. Wenn Sie Luft von Raumtemperatur vor eine kalte Wand blasen würden, dann würden Sie im Infrarot sehen, dass die Luft Wärme abstrahlt, Infrarotlicht abstrahlt. Dass wir Luft nicht sehen, ist also nur ein Phänomen des ganz kleinen Ausschnitts an Strahlung, den unser Auge wahrnimmt.Bleibt die Frage: Warum sind manche Stoffe dann durchsichtig – transparent – während andere das Licht reflektieren? Was ist es, was das Licht gewissermaßen im Stoff zur Umkehr zwingt? Es sind Elektronen, so der Experimentalphysiker Metin Tolan:Quelle: Hans Kricheldorf, Professor für makromolekulare Chemie
Wenn elektromagnetische Wellen – Licht – auf einen bestimmten Stoff treffen, werden sie absorbiert oder nicht absorbiert. Das hängt von den Elektronen im Stoff ab. Wenn die Elektronen richtig mitschwingen können, wenn die richtig angeregt werden, werden die elektromagnetische Wellen absorbiert, die Elektronen verschlucken sie sozusagen. Im Glas können die Elektronen nicht so angeregt werden, deswegen ist das Glas durchsichtig.Glas oder auch Luft sind also durchsichtig, weil es keine Resonanz gibt – die Elektronen sind so eng an die jeweiligen Atome gebunden, dass sie sich von den Lichtstrahlen nicht stören oder gar zum Mitschwingen verleiten lassen. Deshalb geht das Licht einfach durch, ohne seine Energie abzugeben. Aber diese Stoffe sind bekanntlich eher die Ausnahme.Quelle: Metin Tolan, Experimentalphysiker
Bei Metallen ist es genau nicht so. Da sind die Elektronen nicht so fest gebunden, die sind frei beweglich. Deshal