Episode 499
The notes I read from for this episode:
I asked many questions on the last episode. The core ones were “why aren’t we switching to renewables and not polluting faster?” I know we can’t switch overnight, but what sets the pace? Do we know if the limits will go away, like we just need to build more factories, or maybe they won’t, like what led us to retract from supersonic flight? It worked in some ways, but not enough. A mix of social, business, engineering, and physics issues pulled us back.
How much farther can advances go? Can we expect as great advances as the 747 compared to the Wright brothers’ first plane? How much of the solar power hitting the Earth can we effectively use?
I point you to a paper called Pulling Back The Curtain On The Energy Transition Tale, which I link to in the notes. It’s not peer-reviewed, but shares all its sources. It looks at the limitations of renewable energy sources. What does it take to build solar and wind farms? How many do we have to build? How many can we? Things like that. I recommend reading it. I’ll share some highlights, or lowlights.
To start off, most, about 80 percent of energy comes fossil fuels directly, like heating iron to make steel. Some processes can use electrical power but not all. They cite sources that generating that 20 percent of electrical power would cost $11 trillion for solar cells, just a small part of over $250 trillion, though it would have to be in the desert since we couldn’t transmit it far from there. We’d need to grow the grid 14 times faster than we are to do it by 2050.
[EDIT: They published a peer-reviewed version of the paper: Through the Eye of a Needle: An Eco-Heterodox Perspective on the Renewable Energy Transition, by Megan K. Seibert and William E. Rees]
That’s still not covering fossil fuel things like heating and container ships. We’d have to build solar and wind farms 3 to 4 times faster than ever every years until 2050. Since they last 15 to 25 years, once finished, we’d have to replace them all.
Making the solar cells and windmills requires steel, cement, concrete, and other materials that require temperatures we so far only get from fossil fuels, so we’d have to keep burning them to create the would-be sustainable renewables, but they aren’t sustainable if they require fossil fuels in perpetuity. They also emit greenhouse gases. The paper goes into more detail about alternatives like biogas that don’t work for other reasons. For one thing, land we use to grow fuel we aren’t growing food with, but we’re projected to need all that food.
Building solar panels requires fossil fuel-burning temperatures. The processes produce toxic by-products and other greenhouse gases besides CO2. They require some rare minerals that may run out and so far have often led to human rights abuses in mining them.
Since they operate a few decades, disposing of them may lead them to be 10 percent of electronic waste. Recycling materials so far use techniques that expose people to toxic waste.
Batteries and other storage require hundreds of times more capacity than we have. “The world’s largest battery manufacturing facility—Tesla’s $5 billion Gigafactory in Nevada—could store only three minutes’ worth of annual U.S. electricity demand in its entire year of production. Fabricating a quantity of batteries that could store even two days’ worth of U.S. electricity demand would require 1,000 years of Gigafactory production.”
The paper goes into more detail about limitations of batteries and other storage worth reading. Any number of its points might be enough to derail renewables.
“Large cranes (used to load a
Published on 4 years, 4 months ago
If you like Podbriefly.com, please consider donating to support the ongoing development.
Donate