Episode Details
Back to Episodes
Sternengeschichten Folge 633: Die Millenium-Simulation
Description
Sternengeschichten Folge 633: Die Millenium-Simulation
Warum sieht das Universum so aus, wie es aussieht? Warum sind die Galaxien in Galaxienhaufen organisiert, die in noch größeren Superhaufen organisiert sind, die wiederum die gigantischen Filamente bilden, die sich durch den ganzen Kosmos erstrecken und durch ebenso gigantische Leerräume voneinander getrennt sind? Das ist eine durchaus fundamentale Frage und eine die Forscherinnen und Forscher - zu Recht - beantworten wollen. Nur: Wie stellt man das an?
Gut, man kann das Universum beobachten. Man kann die Positionen der Galaxien kartografieren und weil Licht, das aus großer Ferne kommt eine entsprechend lange Zeit unterwegs war und wir damit auch entsprechend weit in die Vergangenheit blicken können, können wir so auch vergleichen, wie das Universum früher im Gegensatz zu heute ausgesehen hat. Aber erstens ist das gar nicht so einfach, wie es klingt. Die kosmologische Kartografie ist ein enorm komplexes Vorhaben und wäre ein Thema für eine eigene Folge der Sternengeschichten. Aber auch die beste Kartografie zeigt uns nur einen Zustand und nicht den Prozess, der dazu geführt hat. Wir haben aber auch keine Möglichkeit, die Entwicklung des Universums "in echt" zu beobachten. Seit dem Urknall sind immerhin fast 14 Milliarden Jahre vergangen. Es bleibt nur noch eine Möglichkeit: Eine Computersimulation.
Wir können die realen Beobachtungsdaten, die wir über den frühen Zustand des Universums haben mit den bekannten Naturgesetzen und den vermuteteten Hypothesen zur Entwicklung des Kosmos kombinieren, alles in einen Computer werfen und dann diesem Modell zusehen. Das ist natürlich ebenfalls deutlich komplexer, als es klingt, aber in diesem Fall ist das kein Thema einer zukünftigen Folge des Podcasts, sondern genau das, worum es diesmal geht. Oder genauer gesagt: Heute geht es um eine ganz besondere dieser kosmologischen Simulationen. Ich möchte von der "Millenium-Simulation" erzählen, deren Ergebnisse im Jahr 2005 veröffentlicht worden sind.
Fangen wir dazu mit der wichtigsten Frage an: Wie simuliert man ein komplettes Universum? Wir wissen: Nach dem Urknall gab es jede Menge Wasserstoffatome, ein bisschen weniger Heliumatome, verschwindend geringere Mengen an Lithium und Beryllium, einen Haufen Energie und sonst nichts. Heute ist das Universum voller Sterne, die Galaxien bilden, die Galaxienhaufen bilden, und so weiter. Wir können jetzt aber nicht einfach ein Programm schreiben, dass die Eigenschaften von Wasserstoff- und Heliumatomen simuliert, das laufen lassen und dann warten, bis daraus Sterne und Galaxien werden. Das wäre einerseits zu kompliziert. Kein Computer der Welt wäre in der Lage, gleichzeitig all die Atome zu simulieren, die beim Urknall entstanden sind. So eine Simulation müsste die nuklearen, die chemischen, die elektromagnetischen, die gravitativen und jede Menge andere Vorgänge gleichzeitig behandeln und das für eine unvorstellbare Menge an Atomen. Wir brauchen also einen anderen Ansatz.
Vor allem, weil das, was ich vorhin gesagt habe, auch nicht komplett richtig war. Es gab nicht nur Wasserstoff, Helium und so weiter. Es gab vor allem jede Menge dunkle Materie. Also die Art von Materie, von der wir wissen, dass sie da sein muss, weil wir beobachten können, wie ihre Gravitationskraft sich auf die Sterne und Galaxien auswirkt. Aber wir wissen nicht, um was für eine Art von Materie es sich dabei handelt; die entsprechenden Teilchen haben wir bis jetzt noch nicht entdeckt. Sicher ist nur: Es gibt im Universum sehr, sehr viel mehr dieser dunklen Materie, als es normale Materie gibt, aus der die Sterne und Galaxien bestehen.
Dass wir nicht wissen, woraus die dunkle Materie besteht, spielt in diesem Fall aber keine so große Rolle, wie man denken mag. Denn um zu verstehen, wie das Universum so geworden ist, wie wir es heute sehen können, kommt es eigentlich nur auf die Gravitations